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NOTE

Etude No. 3: Classical Exact Solutions
for the Zeeman Effect of Hydrogen Atom

Hiizu FUJITA

ABSTRUCT
The Lorentz equation of motion for an electron in hydrogen atom is
solved analytically,exactly. It is found that the features of the Zeeman
effect, i. e., line-numbers of the splitting,magnetic field dependence
(linear or quadratic, for example), are all depends on the magnetic field
strength-itself. This may suggest that some intermediate process

should be deemed between classical and quantum mechanical models.
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§ 4 Applications
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§ 1 Introduction

It was about a century ago, when Zeeman observed the magnetic field
effects on the spectrum of emitted light. Later, H. A. Lorentz pointed out, that
this “Zeeman Effect” can be explained by employing the Lorentz’s equation of
motion for the electrons on a harmonic motion [1]. This is called the Simple
Zeeman effect, or the Lorentz’s Triplet. The calculation is so simple and the

problem appeared to be settled quite well.

However, the experiments went on with more surprising fashion. Firstly,
the structure of the spectrum turned out to be more complicated than doublet
and/or triplet. It appeared with quartet, sextet, for example, in some cases.

Secondly, the unexpected magnetic field strength dependence showed up.

The quantum-mechnicians, of course, came in on the subject [2]. They start-
ed with the excact and well accepted grand Hamiltonians with the magnetic
vector potential. They regarded that the core of the problem is how to quan-
tize the angular momentum of the electrons in the atom. They succeeded in
for explaining the almost all the phenomena, needless to say about “Simple
Zeemann Effect”. They extended their works over the complicated eleciron

configurations under strong magnetic field.

Their efforts fanned out to many directions with great success. They classi-
fied the phenomena into three categories, depending on the magnetic field
strengths ; i. e. (1) the linear (or simple) Zeeman, (2)the quadratic (or diamag-
netic second order) Zeeman, (3) the Paschen-Back effect, and the Landau level
effect [3].
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However, as is well known, the quantum mechanics does not take care of
the change of the space cordinate of a particle upon the time. It handles just
the energy difference (or change) of the expectation value of the syétem by
employing the space-time probability density of the particles. By so doing,
they lost the contact with the classical mechanics. No one even thought that
he was loosing something important. Finally Chaos came up to the surface in
the classical mechnics, and peoples realized that in the regime of the 2), in the

quadratic Zeeman, there exist the chaos phenomena [4].

Actually, it was hard to anticipate Chaos in the theory of the second order
Zeeman effect from the beginning. However, lucky enough, there were optical
data with high magnetic intensity. They analized the data by starting from the
classical Lorentz’s equation. Therefore it is vividly shown what is taking place
on the classical orbit of the electron in the atom. It is found there are serious
relations between the second order Zeeman effect and the chaos theory.
People named the phenomena as DKP (diamagnetic Kepler problem) [5, 6, 7,
8,91.

Such is the rough sketch of the history of the Zeeman effect. It may appear
to the specialists’ eyes of the Zeeman effect that the progress of this field is
very systematical and logical. However, to the “Side line watcheres’ point of
view”, the progress appears to be very temperamental and happy-go-lucky fash-

ion.

The purpose of this work is to extend the way of solving the classical
Lorentz’s equation of motion to the farthest end. Another words, author tries
to solve the classical equation of motion by the strictly mathematical fashion.

This is in hope that we will be able to find the physical vision on the magnetic



60

dependence of the energy separation of the orbital electron. To the author’s
opinion, it appears that no rigorous reason is to be seen to switch the vector

coupling model from the simple zeeman effect to the Pachen-Bach effect etc.

§ 2 Exact Solution of the Algebraic Lorentz
Differential Operator Equation

Lorentz showed the most classical equation of motion for the electron in the
atom (which represents the 1s-electron in hydrogen orbit) in his lecture note
(1). Let's start from this equation, since this is the most typical classical
dynamical equation for the particle, and the physical image is crystal clear, i. e.,

m(d%¢ /df ) = — £+ (e/c)Hz(dn /dt) ()
m(d*n /dt )= —fn — (e/c)Hz(d& /d1), (2)
m(d*¢ /d¢)=—1¢ (3)
¢
n
¢

Fig. 1 The Cartesian coordinates (§, n, ) for equation of motion of an electron in
Hydrogen atom : The origin of the coordinates is at the center of the nucleus of
the atom.
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where the axes &, 7, { correspond to the x, y z axes as shown in Fig.1.

Let’s replace d/dt by D, then the above equations of motion of an electron

become following simultaneous algebraic equations for D ;

mD*¢ = — &+ (e/c)HzDn (4)
mD?n = — fn — (e/c)HzDE (5)
mD*¢=—1¢. (6)

Operating D from the left side of the equations (4) and (5), we obtain the
following equations (7) and (8) :

mD* = — D& + (e/c)HzD | (7)
mD’n=—fDn— (e/c)HzD%¢. (8)

We put the left side of the equation (5), mD?n, into the 2nd term of the right
side of the equation (7), then after some manipulation, we get the following -
equation ;

mD’¢ = — DElf + (1/m) (eHz/c)’} + (eHz/c) (— f/m)n (9)

Similarly, by the combination of the equations (4) and (8), we get the follow-

ing ;
mD*n = — Dnif + (1/m) (eHz/c)*} — (eHz/c) (— f/m)&. 10

We realize that these are the coupled non-linear differential equations, and

therefore, there is high posibility that chaos will take place under some condi-
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tions. However, before we jump onto a computor for the numerical calcula-
tions, we should try to obtain the analytical results. Analytical result is, some-
times, much better than the numerical calculation for looking over the

prospect of the phenomena.

Looking for the way to get the separation of variables, & and 7, we subtract

eq. (10) from eq. (9) and we have,

mD*(€ — n)=—D(&— {f +(1/m) (eHz/c)*}
+HeHz/c)(— f/m)(E+ ) i3]

Similarly,by adding equations (9) and (10), we obtain more or less twin like

equation (12), as following ;

mD*(€ + n) = — D (& + Mif + (1/m) (eHz/c)?)
+ (eHz/c) (— f/m)(n— & (12

From equation (11), we rewrite the variable (£ + n) as follows,

&+ n=(c/eHz) (— m/f){mD*¢ —n)
+ D(&— n){f+ (1/m) (eHz/c)%} (3

By putting the variable £ + 7 into eq. (12), and paying attension to the sign
difference between £ — 71 and 1 — &, we finally obtain the Lorentz equation of

motion for the variable (£ — 7) as follows ;

{[mD?+{f + (1/m) (eHz/c)*}D]?
— (eHz/0)*(— f/m)*)(E— ) =0 (4
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A factorization of eq. (14) can be easily performed, and the result is shown

as follows ;
[D®+{f/m + (eHz/mc)*}D — (eHz/mc) (/m)] (£ —m) =0 19
[D®+ {f/m + (eHz/mc)*}D + (eHz/mc) /m)] (6 —n)=0 (16

As for the variable (£ + 7), it ends up with a pair of the allmost similar equa-
tions ; a pure imaginary factor (i) is multiplied upon the last term in egs. (15)
and (16).

[D*+{f/m + (eHz/mc)*}D — i(eHz/mc) /m)] (E+ m) =0 a7
[D®+{f/m + (eHz/mc)z}D +i(eHz/mc) ¢/m)] (E+n)=0 18

Those above equations are all analytical equation of the 3rd order of D, and
it should be factorized for a linear equation of D where they have a root. We
notice that all the coefficient factors in equations, (15), (16), (17), and (18), are

identical. Therefore, we replace the factor-terms by following simple letters, p

and q;
{f/m + (eHz/mc)*}=—3p 19
(eHz/mc) (f/m)=— 2q @0

Then the equations of motion, (15), (16), (17), and (18), can be writen sim-

ply as follows ;

{(D*—3pD —2(x @} (E— =0 @) [for egs. 15, 16]
{D*—3pD — 2i(x )} (E+ m) =0. (2 [for egs. 17, 18]
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We can apply the Cardan’s solution for the cubic equation, i. e. for egs. (21)
and (22). We see that there are 4 cases for the solution, corresponding to each
(%) signin eq. (21) and eq. (22). Let’s start from the first case ;

[Casel] (D°—3pD—2(+@}€—m=0 @3

We want to factorize the cubic equation for D. The each “root” for this equa-
tion, &, B, ¥, can be writen down by employing the discriminant, d,, as fol-
lowing ;

d,=—-p’andw=(—1+30)/2, *=(—1-3i)/2 ©4)

We obtain the following results ;

o . —_ {q + (d1)1/2}1/3 +{q . (dl) 1/2}1/3 (25)
B]zw{q+(d1)l/2}l/3+ w?{q_(d1)1/2}1/3 626)
Y = wZ{q + (d1)1/2}1/3 +w {q _ (dl)1/2}1/3 @)

It must be instructive to point out, that «,, 8, and y, are the root for the
cubic equation for the derivative operator for time (t). Therefore, these three

factorized terms can be writen as a product as following ;
{(D-—a)D—-B)D—y)HE—m=0 o8

Therefore, the complementry function, or the general solution for this case

is,

(& —m=Cyexp(+ o, )+ Cpexp(+ 1) + Crzexp(+ 74t) 9
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[Case 2] {D’—3pD —2(— }(E—n)=0

From the definition for d, the discriminant for the case 2 is the same as for

the case 1.1i. e.,
d,=(—@*-p'=4, 60

However, “the roots” are different. They are,

o, = {(—+ @) +{(— g — (d)"” @)

Br=0l(- )+ @) + I~ @~ @) 62

Yo= @ (— @+ )"V + 0 (-9 — @) 63
The general solution for this case is, like case 1,

(& —m =Cyexp(+ a, )+ Cpexp(+ B, ) + Cuexp(+ y, t) 64
[Case3) (D*—3pD —2(+ig)J(+m)=0 (39
The discriminant for this case is, by the definition, as follows,

d; =G’ —p’=(—)g"—p’ %)
The roots for this case are,

3= {(iQ+ @) + {(i)) — @y 67

ﬂ3=0){(iq)+(d3)l/2}1/3+(02{(iq)_(dg)llz}l/a (38)

Yy= (02 {(iq)+(d3)l/2}1/3+ a){(iq)_(da)l/Z}lﬁ (39) .
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The general solution for this case is,
&+ n)=Cyexp(+ a;t) + Cpexp(+ B4t + Cyexp(+ 75 1) @0
It should be noticed that the root for this case can be complex number. This
will be easily seen, if we assume d; = 0. In this case, a;=2( iq)l/ % and there-
fore, o ;=(—1) 2q) Y8 Then the solution is

(E+ m) = C;exp(—ivt), plus etc. @

Of course, these terms represent the harmonic motion of the electron.

More arguments will be given in the later section.
[Case 4] {D*—3pD —2(—iQ}(E+m=0 @)
The discriminant for this case is the same as case 3. Since,
d,=(—iQ’—p'=4d, @3

However, the value of the roots are different.

a4={(_ iq)+(d3)1/2}l/3+{(_iq)_(d3)1/2}1/3 @4)
Bi= wi(— i)+ @)+ & {(— i) — @) =
Vo= w2 {(_ iq)+(d3)l/2}l/3+ (0{(_ iq)_(d3)l/2}l/3 (46)

The general solution for this case is,

€+ n=Cyexp(+ a, )+ Cuexp(+ B, t) + Cpexp(+ 7, 1) @7
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Again, in eq. (47), it is easy to forsee that the root for this case can be a com-
plex number. Supose d; = 0, then ;= 2(— iq)*=(2q)"”® (-+i). This will end

up with a harmonic oscilation term,
(E+ n)=C,exp (ivt), plus etc. @9

As a concluding remark for this section (§ 2) we can say as following ;

By combining the general solutions, (29) and (40), with (34) and (48), we
can perfectly separate £ and 7. This is in turn we can perfectly determine the
orbit of the moving electron in the atomic orbit. Needless to say, this is
because we are handling the classical dynamics. However, the nice thing
about the classical dynamics is we are completely free from the ambiguous
choice for the vector model, which depends upon the magnetic field strength
to the angular momentum. Another words, readers may agree to say that the
complicated Zeeman effect phenomena is inherited from the motion of the
orbital electron itself. The author refrain from arguing the chaos phenomena
under the strong magnetic field. This is simply because we do not have

enough time to discuss here.
§ 3 Magnetic Field Dependence of the Energy Separation

It is well known that the number of the real root for the cubic equation
depends on the sign of the discriminant ; d, or d,. Actually, as we have seen in
the basic eq. (14), we are handling the 6th order algebraic equations. There-

fore, we will have 6 real roots for the maximum case.

There are only two types for the discriminant.
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d, =¢*—p® :forthe case 1, and case 2, i. e., for (¢ — 7).
d, =— q® —p’: for the case 3, and case 4, i. e., for E+n

Let’s write down the discriminants explicitly ;

d, = ¢* — p’ ={(— eHz/2mc) ({/m)}?

—(— 1/3)*{(f/m) + (eHz/mc)*}® 49
dy=— o — p*=(— D{(— eHz/2mc) (/m)}*
—(—1/3)*{(f/m) + (eHz/mc)*}® 60

and let’s proceed our discussion stepwise :

{Step 1]

Any cubic function has at least one real number root. The rest of the two

roots are governed by the sign of the discriminant.

(1) d;> 0, we have 2 complex conjugate roots. [1 real, 2 complex, in all]
(2) d,=0, we have just 1 identical real number root. [2 real, in all]

(3 d,<0, we have 2 different real number roots. [3 real, in all]

It must be stressed here, that the above discriminants, d, or d;, depend on
Hz itself. Therefore, it is surprising to find that the splitting line number for
the magnetic effect is the results of the interaction of the orbital electron and
the magnetic field itself. It is not because of the number of energy levels vvith-
in atom. Therefore it appears very artificial, to the author eyes, to change the

employing vector model from simple-Zeeman case to Paschen-Bach effect.
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[Step 2]

It should be noticed that when Hz = 0, then d, and d; become positive ; (>).

Therefore, we get only one real number root for each variable ; £ and 7.

Since, d;=d;=+({/ 3m)°, the roots for each case are as following ;

[Casel] a,=0 61)
B.= o /3m)"*— " ¢/3m)"? 62)
y,= o §/3m)"?— o {/3m)"* 63
(E—m=C + Cpexp(B ) + Ciuexp(y, 1) 64
[Case2] a,=0, B,=B. 7:=7 &9
(§—m) = Cy + Cpexp(Bt) + Cyexp(y; V) 66)
[Case3] a;=0, B;=B, 7v:=n 67
(E+ M =Cy,+ Cyexp(B ) + Cyexply, 1) 69
[Cased] &, =0, B,=B1 v4s=7: 69
(E+m=Cy + Cpexp(B,t) + C3exp(y, D) €0

As the results, we get the following simultaneous equations ;
(& —m=C,, + Cpexp(B 1) + Cyyexp(y, 1) 61
(4 m) = Cj;, + Cyexp(B 1t) + Cyexp(y, t) 62

Therefore, the solution is reduced from the above egs. (61) and (62),
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E=1/2{(C;; + C3) + (Cyp + Cexp(B,t) + (Cy3 + Ciexp(y, D} €3)
n=1/2{(Cs; — C})) + (C3,— Cexp(B 1) + (C33 — Crpexp(y, )} €4

As we understand from egs. (52) and (53), since 8, and y, are complex

imaginary number, then we get the simple harmonic solutions.

[Step 3]

When Hz is not zero, i. e. Hz # 0, we have three choices for each value of d, ,
d,, d;, and d,. As we have defined the variables p and g by egs. (19) and (20),
we have always the discriminant di (=1, 2, 3, 4) like eq. (49) or eq. (50).

Therefore, we have to examine d, case after case ;
[Case 1, and Case 2}
The equation of motion for these cases is as shown below ;
{D*—3pD — (£ Q}(E—m =0, @D
and the discriminants, d, for these cases become identical, i. e.,

d=d,=d,=(x Q)Z"Pg-
={(— 1/2) (£ eHz/mc) {/m)}* — (— 1/3)*{{/m)+(eHz/mc)*} 65)

The root formula for &, «,, becomes,

ap={q+@" +{xq—@"}"”
= {(# eHz/2mc) (f/m) + (d)/*}** + { (= Hz/2mc) (f/m)
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— (@) | 6
[We will get to other roots, f3,,and y,,, shortly].
As we stated in [Step 1], we have 3-choices for each discriminant d, i. e. ;

(1) d >0, 1 real and 2 complex conjugate numbers in all.
(2) d =0, 2 real number roots in all.

3)d<0,3 real number roots in all.

Let’s concentrate our effort to the cases (2), where d =0, for the moment.
This is the simplest case within the above three, and we get the following real

number roots, .

o,=q"+q"=2¢" (cf.eq.66)
= 2{(— eHz/2mc) ({/m)}""*
o, = 2{(+ eHz/2mc) (/m)}* = — a,

For other roots, B and y, we have,
B,=(o+ " )q”*={(— 1431)/2 + (—1—3i)/2}¢"* =—1¢"*
¥1= B4
Bo=(0+ ") (-9 =+q"==p,
Y= B

[ Case 3, and Case 4]

In this case, equation of motion are shown in egs. (35), and (42). The dis-
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criminants for these cases are shown in (36) and (43),

a=d3=d4=(iiQ)2‘D3
a3:=2(iq)1/3=2(_i)q1/3

o= 20" =2(1)g" = a,

Bi=(o+ o) (i = (i) (0+ o )q"* =(i)q"
B:=—Bs

73=(ﬂ’2+ w)(iQ)l/a =B
2= @'+ 0) (=i = (= 1D(i)q" =~ B,
Now the variable q is defined by the eq. (20), as following,

— 2q = (eHz/mc) (f/m). )

All the roots for the [Case 1, and Case 2] and [Case 3, and Cas 4] in [Step

Y N

05 —

| | | 1 |
0.1 0.2 0.3 04 0.5

Fig. 2 The magnetic field dependence of the Zeeman effect : the orientation of the
magenetic field is perpendicular to the orbiatal plane of an electron in hydrogen

atom.
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3], i. e., when d = 0, we have the same magnetic field (H) dependence for the

root. Therefore, writing down the form explicitly, we get as the conclusion ;
(o, B, 7) is proportional to [H?].
In Fig. 2, we show the function of, Y ~ H®.
8 4 Applications

In Fig.3, we can see the “Zeeman effect” of the light which is emitted from a
“Black Spot” on the sun [10]. The distribution of the magnetic field on the sur-
face is unknown. However, the strength of the splitting of the light shows a
curved structure. This structure appears to be very similar to the curve shown
in Fig.2, 1. e., 1/3 power to H. To the author’s knowledg, it appears there is no
experimental results nor explanation that handled this 1/3rd dependence on
H.

It must be easier for this case of classical treatment for the Zeeman effect,
than the quantum mechnical method, to get to chaos. This is because we are
handling the classical equation of motion,and it should be connected to the

chaos, more or less directly.
Conclusions
It is shown that the classical equations of motion for an electron in hydrogen

atom can be solved analytically. To the author’s knowledfge, this is the first

time that solved the non-linear simultaneous equations, analytically.
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Fig. 3 Zeeman effect for the light which is emitted near the Black-Spot upon the sun
surface. Note that the shape of the curve is very similar to the calculated mag-
netic field dependence which shown in Fig. 2.
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Throught the process for solving the equations of motion,it is also found that
the numbers of the splitting lines changes rather drastically, depending on the
magnetic field strength. This effect is reflected upon the results through the

discriminant in the formula for the roots of the equation of motion.
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