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Abstract

Filtration mechanism of buoyant sphere suspension is analyzed by applying low
Reynolds number hydrodynamics. Polystyrene latex particles are used for the
sphere system, and pores of polycarbonate membrane filters provide the capillary
system ; the pore size is well defined and comparable to the diameter of particles.
The accordance between the analytical result and the experimental data is
saticefactory, and thereby it gives a sound base for the turbidity measurements,

which is convenient for measuring latex size in situ.

§ 1. Introduction

Latex is a suspension of polystyrene spheres in water ; the diameter of the
particle is about 2,000 A, typically, and the size distribution has a sharp
maximur(rll). The particles are negatively charged on the surface, due to SO; end
groups which are generated by the chemical synthesis process, and every
particle is surrounded by ionic double layézr).

The particle size is usually measured by using electron microscope, which needs
dried up samples. In a series of latex experimeng, we faced a problem to
measure the particle size, hopefully in situ, and looked for a convenient method.
Finally, we picked up the filtration method, which gave the particle size by
measuring the optical turbidity of the filtrate, as reported in the preceding pape(zlir).
However, another question arose for employing the filtration method; i.e., we
must know the filtration mechanism of a particle through a cylindrical capillary.
The point of the question is that the diameter of the capillary is larger than that
of the particle. This question can be expressed another way ; why is it possible
to filter such a semimacroscopic system as latex when the diameter of the pore is
larger than that of the particle ?

It is an old problem to study the filtration mechanism itself. Ever since Ruth

(5)
established the theory of the cake formation, (layer formation of suspended
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material on a ﬁfter base), it appears that the essence of filtration problem is a
matter of solving a flow rate of the suspending fluid through the entangled
capillary network in the cake. In our case, to the contrary, the cake formation
can be neglected since the total particle number in the suspension is low enough
that there will be only 10 partile layers left upon the membrane filter after the
filtration. As a matter of fact, high fraction of the particles enter into the filtrate.
Here in this work, we study the throughput of particles through the straight pores
on the filter base, and this is a problem of hydrodynamics of low Reynolds

(6)
number.

§ 2. Experimental Conditions

Polystyrene latex suspensions are obtained from Dow Chemical Co., and diame-
ters of which are 910, 1760, 2340; and 2550 A, with +£19 standard deviation.
Samples are diluted by deionized water down to 1.0 X102 wt %, which correspond
to particle densities of 2.41 X 10!, 3.34 X 10'°, 1.42 X 10!, and 1.10 X 10'°cm™3, re-
spectively. Ten milli-litre of each sample is filtered by using polycarbonate
membrane filters of 4.5cm diameter of 10zm thick. The membrane filter, supplied
by Nuclepore Corporation, has well defined holes of 4000 A diameter, and the area
which opened by the holes is 159 of the surface. The actual shape of the hole is
a cylindrical capillary of A=a,/7,=1,/2 and L, 2a=50, typically, where « is the
particle radius, 7, is the radius of the capillary and L is the capillary length ; it is
104 for the present case. The constant pressure is applied across the membrane
filter by using a suction pump. ' The velocity of the suspension through the
capillary is controlled by changing the suction rate of the pump, and the mean fluid
velocity in the capillary is estimated by measuring the time interval necessary for
flitration of the 10 ml sample; typical fluid velocity is about 4.2X1072cm/sec.
Estimated Reynolds number(X,)at this fluid velocity is 1.7X107°, and the low
Reynolds number condition is well saticefied ; D =4000 A, V,=4.2X10"%cm/sec,
and £=1.002 cp for R.=poV, D/, where p is the density of fluid, V,, is the

maximum velocity, D is the capillary diameter and g is the viscosity.



§ 3. Theoretical Basis for Data Analysis

Theoretical basis for the analysis are obtained along the line shown in a
Brenner’s pape(7r). Starting from eq.(2.38) in ref.(7), the flux density vector J is
expressed as,

J=UC—exp(—E) D-V (CexpE) , e (1)
where U is the velocity vector of neutrally buoyant sphere center(p=1.05 for
polystyrene), C is the particle density function, E is the potential energy function
due to an external force which acts on the particle, and D is the diffusivity dyadic.
The first term of eq.(1) represents the convective particle flux and the second term
is for diffusion and external force.

In ref. (7), Brenner showed examples of handling the problem when there is no
convective transport, and in our case for filtration problem, the convection term
must be carried on. Equation(l) is solved by using the continuity equation,

divJ=0. e (2)
Substituting eq. (1) into eq. (2), we obtain a differential equation for C (7, z),
written in a cylindrical coordinate. It is easily solved for C (7. z) as shown in

Appendix, and the result is as following ;

Ef(z):60<1_%)2{1+(1—%>( 23;:" z)} ...... (3)

The eq. (3) is the same to eq(A —16), as shown in the Appendix, and the meaning

of the notations are as following ;
f,(z): area-averaged particle concentration within the capillary.
‘Co=C (7, 0): particle concentration at the entrance of the capillary.
'C,=C(», —o0): particle concentration in the reservoir
# : radius of the capillary.

a: radius of the latex particle.
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Vi : maximum fluid velocity at the center of the capillary. (We assumed the
Hagen-Poiseuille flow for the fluid, and further assumed that the particle
velocity is equal to the fluid velocity within the capillary. This assump-
tion will be well justified, since the particle is well buoyant and the fluid
velocity is very slow : Low Reynolds number.)

Dy, a component of the difusivity dyadic. This component represents the
parallel component to the capillary axis, and it is assumed to be a
constant.

z: coordinate of the capillary axis. We take a cylindrical coordinate
system.

If we simplify, in the eq.(3), that Co,= C;, then we have,
— — a 2
Cf(z)=Co<1——> . (4)
7o

Physically speaking, this effect originates from the geometrical factor which
limits the suspending sphere to enter into the capillary. This effect will be easily

understood by the following modified form ;

Ef(Z)z’Q%cﬁ ...... 5)

As mentioned above, there is a restriction for a buoyant particle to get through
the capillary by the geometrical factor as shown in eq. (5). Meanwhile, there is
no restriction for the host fluid to get into the capillary. This is the physical
reason that the membrane filter can filtrate the suspension, even though the

diameter of the capillary is larger than that of the sphere.
§ 4. Analysis of the Experimental Data and Discussions
Optical turbidity(7Ty.s)is defined as,

Toss=— Iog(I;—gs), """ (6)

where I,,s is the light intensity which is transmitted through the optical sample
cell, and I, is the initial light intensity. If the “narrow beam condition” is well

saticefied, as shown in Fig.l, i.e., any light will be lost out of the beam once it is
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scattered, then the light intensity I,,s is represented by,

Lps=Lexp(—Nox), 1)
where N is the density of the light scattering particle, o is its cross section, and x
is the optical path length through the cell. In the present case, N, the particle
density, is represented by C,(z) in the eq.(3).

/
/////
\\\

Fig. 1

Fig.1 The “Narrow Beam” condition for the optical experiment. Any light quanta
which were scattered by a latex particle will be lost out of the beam, and
contributes to the reduction of the light intensity through the cell.

The light intensity, which is measured before filtration, is represented by,
Les=1, eXD(“ﬁldx), ...... (8)

and the turbidity for the reference sample becomes,

— ool LN\ e
Tres= log( A ) Cox. (9)
Therefore, the “relative turbidity”, which is defined by Tpss/ Trer becomes,
Tows_Cr
T - Cs 10
This is expressed explicitly,
Q_@,)( —a i _E)(z_vaz)} ......
fn_ C, ! 7o 11 Co Dy (H)

Figure 2 shows the particle size dependence of the relative turbidity ; line A is
the experimental result shown in Fig. 6 in ref.(4), and curve(a)is the plot of eq. (4),
where 7,=2000A.
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Fig. 2 Particle size dependence of the relative turbidity(107,.s/ Tres); open circles are
the experimental data shown in Fig. 6 of ref. 4. Curve (a) is calculated by using
eq. (4), where »,=2000 A is used for pore radius. Curve (b) is the normalized
result of curve (a) to the experimental datum at d =1760 A. The normalization
factor of curve (a) to (b), about 2, is justified by the velocity dependence of the
relative turbidity, as shown in Fig. 3.

We obtain curve (b) by normalizing the curve (a) at 1760 A, and it fits well
to the experimental data from 2¢=1500A to 2500A. Justification for the normali-
zation is that eq. (4) is the result for V,,=0, and the experimental data shown by
the line A in Fig. 2 is taken with a constant velocity of 3.4X10-%cm/sec.

As a matter of fact, relative turbidity of filtrate depends on the fluid velocity as
shown in Fig. 3. If we pick up the datum at V,=1.7X10"2cm/sec in Fig. 3 as an
approximation for the V,=0 datum, then the value at V,=3.4X10"%cm/sec is
higher than that of at V,=1.7X10"%cm/sec by about a factor of 2. This is the

same magnitude used for the normalization of the curve (a) to curve (b) in the Fig. 2.
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Fig.3 Velocity dependence of the relative turbidity ; open circles are the experimental
data shown in Fig. 8 in ref. 4. The straight line A represents the linear part of
Va in eq. (3). The broken line shows the saturation effect of the relative
turbidity, 7.e., when the velocity becomes higher and higher, all the particles will
go through the pores. Experimentally, it is 90%

Linear increase of the relative turbidity as a function of the fluid velocity, as
shown is Fig. 3, is well explained by eq.(3). It should start from the value given
by (1—a/7,)?, which is 0.172 for 2a=2340 A for example, and should go up to 7,
vs/ Tres=1.0 ; experimentaly this is 0.9. Beyond that velocity higher, Typs/ Tres
must show level off and should be independent to the fluid velocity ; which is true
as shown by the experimental data in Fig. 3.

Difusivity value for D), is estimated by the gradient of the straight line A in Fig.
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3, and it turned out that D;,=2.1X10"%cm?/sec, which sounds like a reasonable

value.
§ 5. Conclusions

(1) Theoretical base for the turbidity measurements is established by employ-
ing the hydrodynamics of low Reynolds number. It turned out that the
turbidity method is quite useful, when the parameter a/7, and the particle
density are properly chosen, for measureing the latex particle size in situ.

(2) Dominating factor of the filtration mechanism of semimacroscopic sus-
pension, such as latex, is the geometric factor. This factor limits a sphere to
flow through a capillary when the pore size is comparable to that of the
sphere.

(3) The potential effect does not show up in the simplified approximation
formula.

(4) Diffusivity of latex particles of 2340 A diameter is estimatjd as 2.1 X10~°

cm?/sec, at 1.4 X10'®/cm?® particle concentration.
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Appendix
We consider to obtain an analytical formula, to calculate the latex particle
density in a filtrate.(c.f. Fig. A-1)

L
Pore wall
~O)
—'T‘ To
SR T _
Z
Pore wall
Fig. A-1

Fig. A-1 Schematic layout of a capillary and a sphere system. The diameters of the
system are the same order of magnitude.

We start from the flux density vector, which is given by eq.(2.38)in ref.(7), i.e. ;

J=UC—exp(—E)D-V(C exp E), e (A-1)
and the continuity condition,

divJ=0, (A-2)
where,

div J=Sei Lo e O (A-3)

U=Usir+ Upipg+ Uiz, e (A-4)

D=i, iDi(r)+ ipipDe()+ ii.Difr) e (A-5)
V is the gradient operator in the cylindrical coordinate.
Assuming that, {U,=U,=0, D,=D,=0},

eq. (A-1I) reduces to as following ;
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J = Ui.C(7, z)—exp(—E(r)izi.D,(7))
(i'6_(9r+ iza—az)(C(r, z)expE(7)),
=U.i.C(7, z)—exp(—E(r))
(izD//(T)a—azC(V, z)-expE(r))A ...... (A-6)
Therefore,
div J=-2{U.CO, -DiEClrah=0 e (A-7)

Assuming further, {U.,(r, z)=U(r)} , we obtain.

_a _UnC, 2) _ Colr)
32 AT DT T D)

where C,(7) is an arbitrary function.of ». Equation (A-8) is easily solved for z,

and the result is.

Co a=Ciep { Y2} -G (A-9)

where C,(») is again an arbitrary function of r. We consider the boundary
conditions as following ;

at z= 0, (at the entrance of a pore), we put,

_F _ _ G _
C(?’, 0)_ Co_C1(7’) UO(T) (A 10)
at z=—oco, (at the reservoir), we put,
Clr —o)=C=—gd (A-11)
therefore, C,(r)=Co—C,. e (A-12)
We obtain,
C(7, 2)=(Co— C,) exp {%} +Cc, e (A-13)

We consider, nextly, the “Area-averaged concentration” of the particles, which

is defined by as follows;

6f(z) = (

L[ ¢t 9pmrear D (A-14)

%

where the upper limit for the integration, 7,—a, is due to the assumption of hard
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-wall potential, which prohibits the sphere center to get closer to the wall than
7,— a position.

By assuming, {{D/{»)=D,, constant, and U(»)=2V,{1—(r/7,)?}, Hagen-
Poiseuille flow, and C,, C, ; constant}},

we obtain, after a straight forward calculation,

Chor=(=)(Co=Texp( 22 )= Dy Difex

((:DT})(I __:;_)2)_ 1} 4+ Curlno—a)?) e (A-15)

After expanding the two exponential functions into the power series of the

argument, and taking only the first term, we obtain, finally,

Cho=C(1-2){1+(1-S)Fa)) e (a-16

which is shown as eq.(3), in the text.
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