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Abstract

The analysis is performed on the experimental data of the Atom-Interferometer,
which are obtained by Shimizu et al. They employed very slow Neon atom beam for
the Young type double slit diffraction-interferometer. It is noticed that the in-
terference pattern of the atom beam shows a typical partially coherent features.

Nevertheless, it appears that quantum theorists are not good at the partially coher-
ent optics, and they calculate the interference fringe pattern by using simple com-
pletely coherent beams. It is worthwhile, therefore, to analyze the experimental data
by employing more realistic assumptions. It turned out that the de Broglie wave of
the atom beam is partially coherent, and the degree of coherence is obtained from the

analysis.



§1 Introduction

m
The Young’s double slit experiment is very famous. It shows the interference

fringe pattern, and demonstrates the wave character of light. Ever since Dr.Louis
Victors Pierre Raymond de Broglie discovered the wave character of electron, the
efforts were concentrated to observe the interference fringes of electron beam. The
efforts were developed to such an extent as to observe the interference fringes of the
“Atom-Wa(\zr)g’)’ .

The atom-wave interference fringes were observed by Shimizu et al, where they
employed Neon atoms and a set of double sli(x The experimental results are analy-
zed from the Fraunhofer diffraction point of view, and the de Broglie wave equation
is directly examineiisz

Generally speaking, however, diffraction and interference is a different matter. In
the previous worl(zi the author shows that the de Broglie wave of Neon atoms does
perform diffraction. To the author’s surprise, the diffraction of the de Broglie wave
obeyed the Fraunhofer theory. It is foreseen that the de Broglie wave will satisfy
the Fresnel’s diffraction theory and Huygens-Fresnel principles, if the observation
will be performed with higher accuracy.

It is needless to say, to the author’s opinion, that there is no necessity nor obvious
reasons for the Neon de Broglie wave to obey the diffraction theory of the electro-
magnetic wave. This is because, the electromagnetic wave is a “real” vector wave,
while the de Broglie wave is a “complex” wave.

De Broglie showed the relationship between the wavelength of the wave and the
momentum of a particle. However, strange thing happens when one release the con-
dition on the wave velocit;?f Theories tell us that the de Broglie wave is valid only if

"®
the wave velocity is equal to the light velocity. But, would not be it strange to

assume that the de Broglie wave propagates with the light velocity, even when atoms
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are “falling freely” from the source very slowly?
It is suggested in this article that the de Broglie wave has a limited coherence
length, just as a light quantum. This point will be discussed in detail in a coming

article.

§ 2 Experimental Results

Figure 1 shows the typical interference fringe pattern of the double slit Neon atom
interferometer. The Fig. 1 is a reproduction of the Fig. 3 (b) in Shimizu et al's
pape(: In the Fig.l, two vertical arrows show the position where the Fraunhofer
diffraction limit is assumed in the previous pape(: Two broken curves indicate the
envelopes of the maximum and the minimum values of the interference, which is dis-
cussed in detail in § 3.

(s)
The wavelength of the de Broglie wave for the case in Fig.l is estimated as 100 A.

§ 3 The Analyses of the Experimental Results

Figure 2 shows the experimental set up for the atom interferometer, which is re-
ported on Fig.l1 in Shimizu et al’s pape(;j The effective diameter of the “source” is
80 #m. The slit width of the double slit is 2 gm, and the separation is 6 um (center
to center). The distance from the source to the double slit is 76 mm, and it is 113
mm from the double slit to the detector. '

Figure 3 shows the layout of the “optical interferometer”, as is shown on Fig. 10.5
in § 10.4.3 in Ref. (1). The beam “source” in Fig. 2 corresponds to the pin hole on
0y, in Fig. 3, which has 2p, diameter. It would be easily noticed by compareing Fig.
2 and Fig. 3, that one cannot provide a lens for the atom interferometer. Therefore,
the Young type experiment cannot separate the two effects; diffraction and interfer-

ence.
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Fig. 1 Interference fringes of the
double slit Neon atom interferometer.
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Fig. 3 Layout of the optical interferometer.
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The fundamental equation for interference of the two light beams is shown in

§10.4 in Ref. (1) as following;

1(Q)~1(&) +1(8) +,/1(Q) y/1(Q)

where, I{(Q); light intensity at a point Q,

12 cos(ﬁlg—ﬁ) ................................. (1)

1(8), 1(8); light intensity at point Q, which is diffracted from each opening (1) or
(2)

L£12; complex degree of coherence,

B12; effective phase difference,

0; phase difference between the two beams.

If the light source is uniform and circular, and the light intensities are equal for

the both opening, then eq. (1) reduces to as following;

2J 2 2J1(v) ‘
(g, d)=2( 1u(u)) ’l+‘ lv cos[ﬂlz(v)-ﬁ” .................................. 2)
where, J,; a Bessel function,
A; mean de Broglie wavelength,
u= % AUSHIIQ =+ vrr s eer e (3)
_ 2z pud
s B (4)
2J
o, l(v) (1 IR TR R T L PP reY: (5)
v
Brav)= s
2
. 1(v) Q) wverereeee et e et ettt e e s et e et e e et e e e e e e naaeeeens (6)
\'
2
o= —;—d_ sin ¢ ................................................................................... (7)

The notations are to be refered to Fig. 3.
The envelop function for the maximum and the minimum values are obtained by put-

ting cos[Bi2(v)—8] to £ 1 in the eq. (2), and the results are;
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[ 23i(u) 2 , 2J1(v)
Imax(¢’ d)—-Z( } ,l_f_ | (8)
2J1(u 2J,(v
Inin(®, d)= 2( 1( )) 1_’ lv( L U (9)
The visibility of the fringes, V(Q), or the degree of coherence is defined by,
max mm 2J1(V)
V(Q)— max—{—lmm .............................................................. (10)
and the following values are to be used for the variables;
A=100A=1X10"%cm
201=80 um, (p;=4X10"3cm)
d=6um=6X10"*cm
a=1xgm=1X10"%cm
R=7.6cm
then, v=1 .98, ......................................................................................... (11)
and the degree of coherence becomes,
2J
’%V) T . 7 2R PO a2

§4 Discussions

The interference fringe pattern, which is shown in Fig. 1, is fully understood only
by employing the partially coherent waves. The accordance between the ex-
perimental and the theoretical results are satisfactory. (Experimental value is
0.5609.) Believe it or not, de Broglie wave is only partially coherent. This effect is
shown by the broken curves in Fig. 1. They represent the envelopes for the max-
imum and the minimum points in the interference fringes.

The interference fringes of light, due to a set of double slit, is often demonstrated
by using a laser beam. In this case, the light beam is well coherent, and the in-

terference fringes show up with a good visibility (or degree of coherence). However,
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the de Broglie wave due to the atom beam is far from complete coherency. The de-
duced value of the degree of coherence is 0.5837 for the present case.

There are many demonstrations for the interference fringe due to “double slit” ex-
periment of electron beam. Peoples believe in easily that the split electron beam is
perfectly coherent. The author feels it is very dubious to say that “each electron
passes the two slits at a time”, or to say that “electron knows whether there are two
slits or just one”. Because, about 30% of de Broglie wave passed the single slit,
nevertheless there are two slits. The partially coherent features of the electron
beam will show up clearly, if electron beam experiments will be performed more
carefully.

We must accept the following statement; The experiment shows, without doubt,
that the atom de Broglie wave has partially coherent features. The question is,
whether this is the essential character of the atom de Broglie wave and cannot be elim-
inated, or this is simply due to a technical limit of the experiment? Another words,
can we expect that an Atom-Laser will be invented someday, and we will have a per-
fectly coherent atom wave? The author believes this is a big question and an impor-

tant branching point of the further’arguments.

§5 Conclusion

The analyses have been performed on the experimental data of the interference
fringes of atom de Broglie wave. It is clearly shown that the atom de Broglie wave
is partially coherent. The degree of coherence is 0.5837, which is far from the per-

fect coherence.
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Abstract

The de Broglie wave equation, i.e. A= h/p, is derived from the principle of
relativity. On the way, a parameter 8’, which is equal to v,/c, appears, and the de
Broglie wave equation is obtained by putting 8'=1. The de Broglie wavelength is
numerically calculated as a function of 8, where 8 =u/c.

By putting 8’ =8, “another de Broglie wave” appears and the features of the new

wave is shown by calculating the equation numerically.
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§1 Introduction

The de Broglie wave equation is well established and it appears that there is no in-
ternal contradictions. It is easily verified when a particle moves with constant
velocity. In this case, the motion of the particle is well expressed by a plane wave,

and the famous relation holds;

On the one dimensional case, the vector equation can be written by a scalar equation,

and the de Broglie equation is achieved as,

On the other side, the reality of the de Broglie wave is directly examined
experimentall;: by analyzing the "Atom interferometer” datgf In the analysis, it is
shown that the de Broglie wave behaves as if it is real wave, like light wave. It
shows the Fraunhofer diffraction, as well as interference. In this small article, the
author would like to show the relationship between the de Broglie wave and the prin-
ciple of relativity. It is also shown that there is “another de Broglie wave”, under
some circumstances. The wavelength of the new wave is extremely short, and it is
imagined that the wave represents the particle character, rather than wave prop-
erties.

The wave length of the new wave is zero, when u, the velocity of a particle, is zero,
contrary to A =h/p, which goes up to infinity when u=0. The difference between the
new wave and the ordinary de Broglie wave gets smaller and smaller when B

approaches to 1, and the wavelength of the two waves become zero, when §=1.
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In § 2, the derivation of the new wave is shown, and the numerical results are also

shown in a graph. Discussions on the results are presented in § 3.

§ 2 Theoretical Results

The relativistic invariant quantity is represented as,

€ 2_p262=mgc4 .................................................................................... (4)

where the notations are as conventional use. Taking the derivative of eq (4),

26;d£—2p'dp'c2= O (5)
Therefore, group velocity, v, becomes,
®,
3 c?
v = Pl e ———— (6)

9p VT e

(A) casel (B8'=1)

If we set in eq. (6) vgzgi ................................................................... (7)
OF Hf We et v/ CmB” w+eeereresssssssrse sttt (8)
AN PUE B/ 1 oereerer e (9)
RN £ S PC.wereerreeene e s e et {0)
Therefore it becomes, §2—pZeZ=-++++++esrererrermrmrminininnrniiiiiiiiiieniiee 11)
which means my=0, «=+-=-rewsersmesmmseree ettt 19

i.e., light quantum has no restmass.

Let us go further from eq. (10. By combining the famous equations,

ol R LR TP P PP PP PP R P P PR YRR PR 13

AN CIS A covre e v ettt ettt e et e taete ettt eataeas (14;
C

then, pc=¢ =hy :h7 .......................................................................... (15)

Thus the de Broglie wave equation,
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is derived from eq. (1.

The relativistic momentum, P, is represented as,

P= I s 17

u2

1=

and in case of one dimensional motion, the de Broglie wavelength is represented by,

u2

1— —
cz

g
— o{:i»—-

m—(,chl—__BZ_ ....................................................................... 19

The factor, h/m,c, is the Compton wavelength of the particle. The numerical re-
sults of eq. (18 is shown by the curve I, in Fig. 1. The de Broglie wavelength, 1, be-
comes zero when 8=1, and it becomes infinity when 8=0.

(B) Casell (8’=B)
What if v, % c in eq. (6)7 Then,

g_; =v,= pTcz ................................................................................... (6)
BY COMBIMINE V== DA -+ +ereesesseressstnr sttt ittt 19
AN E IR coeveeeeeererereaereie et et r e e e e e e e e e e ae e e e e s a3
We obtain A =B'2% ............................................................................. @0

T — o
where, B/=v,/c and B=u/crr++ereerrersssrsnmtn st 29
here, v, represents the group velocity and u is the particle velocity. The group
velocity and the particle velocity meet togethe(;: and we can put

BB et s @3

Finally, we obtain the following equation for the “new de Broglie wave”;



On de Broglie Wave Part II Relativistic de Broglie Wave 23

unit)
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(B)
Fig. 1 s dependence of de Broglie wavelength.
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In table 1, the numerical results of eq. (18 and eq. 1) are shown, and they are repre-

sented by the curves I and II in Fig. 1, respectively.

Table 1 B-dependent part of de Broglie wave.

5 LeE FLITE
0.0 0.0000
0.1 9.9498 0.0994
0.2 4.8989 0.1959
0.3 3.1797 0.2861
0.4 2.2912 0.3665
0.5 1.7320 0.4330
0.6 1.3333 0.4799
0.7 1.0202 0.4998
0.8 0.7500 0.4800
0.9 0.4843 0.3922
0.95 0.3286 0.2966
0.975 0.2279 0.2166
1.0 0.0000 0.0000

§ 3 Discussions

(A) Casel (B'=1)

The de Broglie wave is obtained by putting 8” =1 as shown in eq. (8) and (9).
Nevertheless, the parameter B is changed from 1 to 0, as shown in eq. 18. This
sounds like inconsistent : To put =1 on one hand, and to take 8 as a variable on
the other hand. However, the reality of de Broglie wave is directly shown, even for
Neon atom, by the Atom-Interferometer experiment.

(B) Casell (B'=B)

There will be some questions on eq. (19, for putting v,= V4, since v, is the group

velocity. However, it is shown, experimentally, that the difference between the
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group velocity and the phase velocity for the Neon atom beam is only scalar factor of
2 differencg.' So, this assumption, eq. (19, should not be fatal.

The wavelength of this “new de Broglie wave” is very short. It is proportional to
the particle velocity, u, when B is small. Itbsounds like this feature shows the
“particle-like” properties of the wave; while the normal de Broglie wave represents

the “wave-like” properties of the particle.

§4 Conclusion

(1) The de Broglie wave equation is derived by using the principle of relativity.
(2) A funny wave appears when the group velocity of the de Broglie wave is sup-

posed not to be the light velocity.
(November 22, 1993)
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