ON THE DIOPHANTINE EQUATION

$$\alpha^l + \beta^l = C \gamma^{l^n}$$

K mio YAGIS ..TA

In this paper we designate by

l	an odd prime number,
ζ_{ν}	a primitive $l^ u$ -th root of unity, $\zeta_ u$ = $e^{2\pi i/l^ u}$
k	the cyclotomic field of ζ_1 ,
k_{0}	the real subfield of k of the degree $(l-1)/2$,
$h = h_1 l^t$	the class number of k , $l ightharpoonup h_1$,
h_0	the class number of k_0 ,
$K = k(\zeta_{t+1})$	the cyclotomic field of ζ_{t+1} ,
$\lambda_{t+1} = 1 - \zeta_{t+1}$	the prime divisor of l in K ,
$\left(\frac{\omega}{\mathfrak{p}}\right)_{(\nu)}$	the l^{ν} -th power charactor in K ,
$\bar{\alpha}$	the conjugate complex number to α .

THEOREM. For $n \ge 3t+2$, 2m > t+3 and $(\varphi\{(C)\}, l)=1$,

(1)
$$\alpha^{l} + \beta^{l} = C \varepsilon (\lambda \bar{\lambda})^{ml} \gamma^{ln}$$

is impossible in non-zero integer α , β and γ in k_0 , where ε is a real unit and $\lambda=1-\zeta_1$, and φ $\{(C)\}$ denotes Euler's function of principal ideal (C) in k and $(\alpha, \beta)=1$, $l \nmid h_0$.

REMARK. For C=1, this theorem was proved by Prof. T. Morishima [1]. Proof. I. Yamaguchi [2] proved the following lemma:

LEMMA. Let $(\varphi\{(C)\}, l)=1$ and assume that the equation (1) is solvable

ON THE DIOPHANTINE EQUATION $\alpha^l + \beta^l = C\gamma^{ln}$

in integer α , β and γ in $Q(\zeta+\zeta^{-1})$ which is the maximal real subfield of l-th cyclotomic field $Q(\zeta)$. Then the factor $\alpha+\beta$ of the left side of (1) is divisible by (C). Where $\varphi\{(C)\}$ is the Euler function of principal ideal (C) in $Q(\zeta)$.

By this lemma, $\alpha+\beta$ is divisible by C. Since $h=h_1l^t$ $(l
ot h_1)$, $l
ot h_0$ and $\alpha+\beta$ is an integer in k_0 , we have

$$\frac{\alpha + \zeta_1^r \beta}{1 - \zeta_1^r} = \varepsilon_r \omega_r^{l^{n-t}}$$

$$\frac{\alpha + \zeta_1^{-r}\beta}{1 - \zeta_1^{-r}} = \bar{\varepsilon}_r \bar{\omega}_r^{l^{n-t}}$$

$$(4) \qquad \alpha + \beta = C \varepsilon_0 \lambda^{(2m-1)l+1} \omega_0^{l^n},$$

where &'s are real units.

Hence from (2), (3) and (4)

(5)
$$\omega_r^{l^{n-t}} - \overline{\omega}_r^{l^{n-t}} = C\varepsilon' \lambda^{(2m-1)l} \omega_0^{l^n},$$

therefore

$$\prod_{i=0}^{l^{l+1}-1} (\omega_r^{l^{n-2l-1}} - \zeta_{l+1}^i \overline{\omega}_r^{l^{n-2l-1}}) = C \varepsilon' \lambda_{l^{l+1}}^{(2m-1)l^{l+1}} \omega_0^{l^n}.$$

Consider that

$$\left(\frac{\omega_r^{l^{n-2l^{-1}}}\!\!-\!\zeta^i{}_{t+1}\overline{\omega}^{l^{n-2l^{-1}}}}{1\!-\!\zeta^i{}_{t+1}}\right)\!\!=(\mathcal{Q})=\mathcal{O}_i^{l^n},$$

then since

$$\Omega \equiv \omega_r^{(n-2l-1)} \pmod{\lambda_{t+1}^{(2m-2)l^{l+1}+1}}$$

 $n-2t-1 \ge t+1$, $(2m-2)l^{t+1}+1>(t+1)(l-1)l^t+l^t+3$, for all prime ideal prime to $l\Omega$ in k [3],

$$\left(\frac{\mathcal{Q}}{\mathfrak{p}^{h}}\right)_{(t+1)} = \left(\frac{\mathcal{Q}}{\theta}\right)_{(t+1)} = \left(\frac{\theta}{\mathcal{Q}}\right)_{(t+1)} = \left(\frac{\theta}{\mathcal{Q}/t}\right)_{(t+1)}^{t^{h}} = 1,$$

where $\mathfrak{p}^h = (\theta)$.

Since

$$1 = {}_{\kappa} \left(\frac{\mathcal{Q}}{\mathfrak{p}} \right)_{(t+1)}^{h_1 t^t} = {}_{\kappa} \left(\frac{\mathcal{Q}}{\mathfrak{p}} \right)_{(1)}^{h_1} = {}_{\kappa} \left(\frac{N_{\kappa/\kappa}(\mathcal{Q})}{\mathfrak{p}} \right)_{(1)}^{h_1},$$

then by [4],

$$N_{KIk}(\mathcal{Q}) = \frac{\omega_r^{l^{n-t-1}} - \zeta_1^{i} \overline{\omega}_r^{l^{n-t-1}}}{1 - \zeta_1^{i}} = \delta_i^{l},$$

and from (5)

$$\omega_r^{l^{n-t-1}} - \overline{\omega}_r^{l^{n-t-1}} = C \varepsilon'' \lambda^{(2m-2)\,l+1} \, \delta_0^{l^n},$$

for
$$\zeta_1^{-(l-1)/2} \lambda^{-1} \left(\omega_r^{l^{n-t-1}} - \overline{\omega}_r^{l^{n-t-1}} \right) \in k_0$$
,

then

(6)
$$\omega_r^{2l^{n-t-1}} + \overline{\omega}_r^{2l^{n-t-1}} - (\zeta_1^i + \zeta_1^{-i}) \omega_r^{l^{n-t-1}} \overline{\omega}_r^{l^{n-t-1}}$$
$$= (1 - \zeta_1^i) (1 - \zeta_1^{-i}) (\delta_i \delta_{-i})^l,$$

(7)
$$\omega_r^{2l^{n-t-1}} + \overline{\omega}_r^{2l^{n-t-1}} - 2\omega_r^{l^{n-t-1}} \overline{\omega}_r^{l^{n-t-1}}$$
$$= C^2 \varepsilon''' \lambda^{2(2m-2)l+2} \delta_0^{2l^n}.$$

From (6), (7) for i=1, 2,

$$(\delta_1\delta_{-1})^l$$
 $-(\delta_2\delta_{-2})^l$

$$=\frac{(\zeta_{1}+\zeta_{1}^{-1}-\zeta_{1}^{2}-\zeta_{1}^{-2})(\omega_{r}^{2l^{n-t-1}}+\overline{\omega}_{r}^{2l^{n-t-1}}-2\omega_{r}^{l^{n-t-1}}\overline{\omega}_{r}^{l^{n-t-1}})}{(1-\zeta_{1})(1-\zeta_{1}^{-1})(1-\zeta_{1}^{-2})(1-\zeta_{1}^{-2})}$$

$$=C^2\varepsilon''''\lambda^{2(2m-2)l}\delta_0^{2l^n},$$

then

$$\alpha_1^l + \beta_1^l = C^2 \varepsilon_1 (\lambda \bar{\lambda})^{(2m-2)l} \gamma_1^{l^n},$$

where α_1 , β_1 , $\gamma_1 \in k_0$, $(\alpha_1, \beta_1) = 1$, 2(2m-2) > t+3,

which is a contradiction.

REFERENCES

1. T. MORISHIMA. Uber die Fermatsche Vermutung, IV. Proc. Imp. Acad. Tokyo., IV (1930), 243-244.

On the diophantine equation $\alpha^l + \beta = C \gamma^{ln}$

- 2. I. YAMAGUCHI. A Note on Lemma of Morishima and Miyoshi Concerning the Equation $\alpha^l + \beta^l = C\gamma^l$. to appear.
- 3. E. ARTIN. Abh. Math. Sem. Hamburg., 5 (1927).
- 4. D. HILBERT. Zahlberichit. Chelsea., § 135.

CHUO GAKUIN UNIVERSITY